C. U. SHAH UNIVERSITY Summer Examination-2022

Subject Name: Linear Control Theory

Subject C	ode: 4TE0	95LCT1		Branch: B.Tech (Electrical)			
Semester	: 5	Date: 25/04/2022	2	Time: 11:00 To 02	:00 Ma	arks: 70	
Instruction (1) U (2) In (3) D (4) A	ns: se of Progr structions raw neat di ssume suita	ammable calculato written on main ans agrams and figures able data if needed.	r & any oth swer book a s (if necessa	er electronic instrum re strictly to be obey ry) at right places.	ent is prohibi ed.	ited.	
Q-1	Attem	pt the following q	uestions:			(14)	
Attempt a	 a) What i b) Define c) Define d) What i e) What s f) How to g) Define h) Give th i) What i j) What i k) What i l) What i m) Define n) Can wo my four question 	s control system? relative stability. : error s the damping factor hould be the damping of find mathematical non-linear system. The name of any one s the use of signal f s the effect of a non s the Laplace transf s the starting point resonance peak in e assign initial conc uestions from Q-2	or of undam ing factor of 1 model? method to flow graph? n-minimum form of dx/o of root locu the Bode pl ditions in sta to Q-8	ped system? f a Lift? find absolute stability phase system? lt? s? ot. ate space analysis?	у.		
Q-2 (a) (b) (c)	Attempt List adva Explain o block dia Consider while K, function output di	all questions intages and disadvar open loop control s igram and example the system shown M, and B are mech $\frac{X(s)}{E_1(s)}$ for the sys isplacement.	antages of tr ystem and c s. in figure:1, nanical para tem where o	ansfer function losed loop control sy R, L, C is electrical meters as shown. Fir e ₁ (t) is input voltage	vstem with parameters ad the transfe while x(t) is	(3) (4) r	

Figure: 1

Q-3 Attempt all questions

- (a) What is state space model? Define states. Derive the expression for converting state model to transfer function?
- (b) Sketch Bode plots of a unity feedback control system having open-loop (7) transfer function as given below. The magnitude plot of this function should be an exact one and not an approximation. Find the GM and PM $G(s) = \frac{10(0.5s+1)}{s(0.1s+1)(0.2s+1)}$

Q-4 Attempt all questions

(a)	A unity feedback control	l system's oper	n loop transfer	function is	(7)
-----	--------------------------	-----------------	-----------------	-------------	-----

$$G(s)H(s) = \frac{k(s+13)}{s(s+3)(s+7)}$$

Using Routh criterion, calculate the range of k for the system to be stable. If the value of k=1, comment on stability.

(b) What is Root Locus? Write the various rules for drawing root locus (7)

Q-5 Attempt all questions

(a) Draw the root-locus for open-loop transfer function (7) $G(s) = \frac{\kappa}{1-s}$

$$G(s) = \frac{1}{s(s+3)(s^2+2s+1)}$$

When K is varied from 0 to infinity.

(b) Draw unit step response of a second order control systems. Describe all (7) specification in detail.

Q-6 Attempt all questions

- (a) Derive the equation of Peak time and Peak overshoot for under damped (7) second order system.
- (b) Using block diagram reduction rules find the overall transfer function of figure:2.

Q-7 Attempt all questions

- (a) Derive steady state errors for unit step, unit ramp and unit parabolic input. (3)
- (b) Write Meason's gain formula and define each term of the formula. (4)
- (c) Explain absolute stability, relative stability and BIBO stability. (7)

Q-8 Attempt all questions

(a) Draw the Bode plot for $G(s) = \frac{10(1+0.5s)}{(1+0.1+0.2s)}$ (7)

$$s(1+0.1s)(1+0.2s)$$

Also find phase and gain margin.

(b) Determine the State Variable System determined by (7)

$$T(s) = \frac{Y(s)}{R(s)} = \frac{4(s+3)}{(s+2)(s+1)}$$